Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HAL-Rennes 1arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-Rennes 1
Conference object . 2023
License: CC BY
Data sources: HAL-Rennes 1
https://doi.org/10.61782/fa.20...
Article . 2022 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Internet Protocol adaptation layer for underwater acoustic networks

Authors: Parrein, Benoît; Morozs, Nils; Toutain, Laurent;

An Internet Protocol adaptation layer for underwater acoustic networks

Abstract

The Internet of Underwater Things (IoUT) is on the way. The key application areas of IoUT include ocean engineering, maritime security and environmental monitoring. To achieve interoperability between different underwater communicating systems and/or to ensure connectivity from the air to underwater (and reversely), an Internet Protocol (IP) adaptation layer is necessary. In this paper, we propose Underwater-SCHC (U-SCHC) based on the Static Context Header Compression protocol (SCHC), a standard at the Internet Engineering Task Force (IETF) for terrestrial Internet of Things. The purpose of the paper is to describe the protocol encapsulation in the context of very low bit rates and small payloads as are usually observed in underwater acoustic systems. As a result, we reach the header compression ratio of 99.74% with just a single bit allocated to the UDP/IPv6 stack.

Keywords

[INFO.INFO-NI] Computer Science [cs]/Networking and Internet Architecture [cs.NI], underwater acoustic networks, header compression, IP adaptation layer, SCHC protocol

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green