
We investigate two types altered Lucas numbers denoted and defined by adding or subtracting a value from the square of the Lucas numbers. We achieve these numbers form as the consecutive products of the Fibonacci numbers. Therefore, consecutive sum-subtraction relations of altered Lucas numbers and their Binet-like formulas are given by using some properties of the Fibonacci numbers. Also, we explore the gcd sequences of r–successive terms of altered Lucas numbers denoted and , , according to the greatest common divisor (gcd) properties of consecutive terms of the Fibonacci numbers. We show that these sequences are periodic or Fibonacci sequences.
Lucas Sequence, Fibonacci Sequence, Altered Lucas numbers;Greatest common divisor (gcd) sequences;Fibonacci sequence;Lucas sequence, Altered Lucas Numbers, Greatest Common Divisor (GCD) Sequences
Lucas Sequence, Fibonacci Sequence, Altered Lucas numbers;Greatest common divisor (gcd) sequences;Fibonacci sequence;Lucas sequence, Altered Lucas Numbers, Greatest Common Divisor (GCD) Sequences
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
