<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An equation of state (EOS) is a thermodynamic expression that relates pressure (P), temperature (T), and volume (V). This equation is used to describe the state of reservoir fluids at given conditions. The cubic equations of state (CEOS) such as Van der Waals, Redlich-Kwong, Soave, and Peng-Robinson are simple models that have been widely used in the oil industry. This chapter expressed literature for EOS that varies from simple expressions to multiple constant and convoluted types of equations. Many attempts have been made to describe the thermodynamic behavior of fluids to predict their physical properties at given conditions. So, several forms of the equation of state have been presented to the oil industry in order to calculate reservoir fluid properties. The heat exchanger is important in wildly fields as in aerospace, petrochemical industry, refrigeration, and other fields. The optimization design of the heat exchanger is a great significance to industry process to reduce production cost, realize energy conservation, and reduce energy consumption.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |