
The overall power conversion efficiency of organic Rankine cycle (ORC) systems is highly sensitive to the isentropic efficiency of expansion machines. No expansion machine type is universally ideal as every machine has its own advantages and disadvantages and is suitable for a comparatively narrow range of operations of the highest efficiency. Therefore, an optimum selection of an expansion machine type is important for a financially viable ORC implementation. This chapter presents the mode of operation, technical feasibility, and challenges in the application of turbo-expanders (radial inflow, radial outflow, and axial machines) and volumetric expansion machines (scroll, screw, piston, and vane) for use in ORC systems. It can be concluded that different machines are suitable for a different range of power output in commercial applications. In general, volumetric machines are suitable for 50 kWe and below but turbomachines are more suitable for power outputs higher than 50 kWe.
Turbomachines, Volumetric expanders, Expansion machines, expansion machines, turbomachines, volumetric expanders, organic Rankine cycle, isentropic efficiency, Organic Rankine cycle, Isentropic efficiency, 620
Turbomachines, Volumetric expanders, Expansion machines, expansion machines, turbomachines, volumetric expanders, organic Rankine cycle, isentropic efficiency, Organic Rankine cycle, Isentropic efficiency, 620
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
