
Inverse problems arise everywhere we have indirect measurement. Regularization and Bayesian inference methods are two main approaches to handle inverse problems. Bayesian inference approach is more general and has much more tools for developing efficient methods for difficult problems. In this chapter, first, an overview of the Bayesian parameter estimation is presented, then we see the extension for inverse problems. The main difficulty is the great dimension of unknown quantity and the appropriate choice of the prior law. The second main difficulty is the computational aspects. Different approximate Bayesian computations and in particular the variational Bayesian approximation (VBA) methods are explained in details.
Physics - Data Analysis, Statistics and Probability, FOS: Physical sciences, Data Analysis, Statistics and Probability (physics.data-an)
Physics - Data Analysis, Statistics and Probability, FOS: Physical sciences, Data Analysis, Statistics and Probability (physics.data-an)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
