
doi: 10.5772/6939
Spacecraft represent one of the application domains that have the most to gain from reconfigurability, particularly due to the high cost and long delays associated with designing, building, qualifying and launching a new craft (Lanza 2004). Areas in which spacecraft can benefit include: · Tele-alteration: the ability to change configuration and function of a system remotely, increasing mission agility and extending the useful life of the system. · Resilience and robustness: reconfigurability makes it possible to map out failed components and restore functionality. · Functionality on demand : when a new function is required, if the configurable resources are in place, remotely configure the required functionality Adapting commercial technologies to reconfigurable space systems is complicated by the requirements of small size and weight, low power consumption, and radiation hardness. This chapter presented an example of a reconfigurable processor developed for space using radiation-hard-by-design techniques. The goals of the design were to achieve an appropriate level of functionality to solve a wide range of space computing problems, extensible to larger-scale problems than can be implemented in one chip, minimal power consumption, and sufficient radiation hardness for space applications. The architecture implements a
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
