<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.5772/60914
Ionizing radiation has always been present in the natural environment. However, this radiation is not easily detected and since it also possesses high ionizing power and penetration strength, it constitutes a risk to human health when it is found outside of its acceptable limits. The adverse effects of ionizing radiation on human health need to be systematically monitored in order to prevent damage, overexposure, or even death. The detection of the radiation depends on its particular interaction with a sensitive material, and different types of detectors, in different physical states (solid, liquid or gas), are used to measure selective types of ionizing radiation. New materials such as organic semiconductors, for instance, are being targeted for research and as potential candidates for new perspectives on ionizing radiation sensing.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |