
doi: 10.5772/54325
The search for renewable sources of energy requires a worldwide effort in order to decrease the harmful effects of global climate change, as well as to satisfy the future energy demands. In this context, biofuels are emerging as a new source of energy derived from biomass. The production of biofuels could decrease effectively the impact of pollutants in the atmosphere, in addition to assisting in the management for tons of biomass waste. Biomass (plant matter) can be referred to "traditional biomass", which is used in inefficient ways such as the highly pollutant primitive cooking stoves (wood), and "modern biomass" that refers to biomass produced in a sustainable way and used for electricity generation, heat production and transportation of liquid fuels [1]. In addition to these definitions, The International Energy Agency (IEA) defines biomass as any plant matter that could be used directly as fuel or con‐ verted into fuels, electricity or heat. Therefore, in order to provide useful management of bi‐ omass, it is clear that one needs to learn how to extract energy from plants.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 47 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
