<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.5772/51568
The current situation of the automotive industry is a challenging one. On one hand, the ongoing trend to more luxury cars brings more and more benefits to the customer and is certainly also an important selling point. The same applies to the increased safety levels modern cars have to provide. However, both of these benefits come with a severe inherent drawback and that is extra weight and, consequently, higher fuel consumption. On the other hand, increased fuel consumption is not only a disadvantage due to the ever rising fuel costs and the corresponding customer demand for more efficient cars. Due to the corresponding greenhouse gas emissions it is also in the focus of the legislation in many countries. Commonly road transport is estimated [13, 15] to cause about 75-89 % of the total CO2 emissions within the world’s transportation sector and for about 20% of the global primary energy consumption [12]. These values do not stay constant; in the time from 1990 to 2005, the required energy for transportation increased by 37% [11] and further increases are expected due to the evolving markets in the developing countries. As industrial emissions decrease, the rising energy demand in the transport sector is expected to be the major problem to achieve a significant greenhouse gas reduction [26]. Consequently, about all major automotive markets introduce increasingly strict emission limits like the national fuel economy program implemented in the CAFE regulations in the US, the EURO regulation in the European Union or the FES in China.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 30 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |