
Smooth non-autonomous T-periodic differential equations x'(t)=f(t,x(t)) defined in \R\K^n, where \K is \R or \C and n 2 can have periodic solutions with any arbitrary period~S. We show that this is not the case when n=1. We prove that in the real C^1-setting the period of a non-constant periodic solution of the scalar differential equation is a divisor of the period of the equation, that is T/S\N. Moreover, we characterize the structure of the set of the periods of all the periodic solutions of a given equation. We also prove similar results in the one-dimensional holomorphic setting. In this situation the period of any non-constant periodic solution is commensurable with the period of the equation, that is T/S\Q.
Periodic orbit, Holomorphic differential equations, 37G15, 34C25, Periodic differential equations, 37C27
Periodic orbit, Holomorphic differential equations, 37G15, 34C25, Periodic differential equations, 37C27
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
