Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Project Euclidarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Project Euclid
Other literature type . 1992
Data sources: Project Euclid
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Differential and Integral Equations
Article . 1992 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Homoclinic orbits for a class of Hamiltonian systems

Authors: Omana, W.; Willem, M.;

Homoclinic orbits for a class of Hamiltonian systems

Abstract

The Hamiltonian system under consideration is governed by equations of the form \[ \ddot q+V_ q(t,q)=\ddot q-L(t)q+W_ q(t,q)=0, \] where \(L(t)\) is a positive definite matrix and further technical conditions, among other things, ensure that the origin is a local maximum of \(V\) for all \(t\). The authors first reconsider a theorem by Rabinowitz and Tanaka concerning the existence of a homoclinic orbit emanating from 0. Using a new compact imbedding theorem, they are able to show that the Palais- Smale condition is satisfied, which in turn makes it possible to prove the above cited theorem by the more traditional techniques relying on the Mountain Pass Theorem. If, in addition, \(W\) is an even function for all \(t\), they make use of the symmetric mountain pass theorem to prove the existence of an unbounded sequence of homoclinic orbits.

Keywords

homoclinic orbits, 70H05, 34C37, Abstract critical point theory (Morse theory, Lyusternik-Shnirel'man theory, etc.) in infinite-dimensional spaces, Homoclinic and heteroclinic solutions to ordinary differential equations, Hamiltonian systems, 58F05, 58E05, Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems, mountain pass theorem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    99
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
99
Top 10%
Top 1%
Average
Green