Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Project Euclidarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Project Euclid
Other literature type . 2003
Data sources: Project Euclid
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Advances in Differential Equations
Article . 2003 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

Wentzell boundary conditions in the context of Dirichlet forms

Wentzell boundary conditions in the context of Dirichlet forms.
Authors: Vogt, Hendrik; Voigt, Jürgen;

Wentzell boundary conditions in the context of Dirichlet forms

Abstract

For the formal elliptic expression \(L=\nabla a\nabla\) on \(\Omega\subset{\mathbb R}^d\) with Wentzell boundary condition \(-\alpha Au +n\cdot a\nabla u +\gamma u=0\) on \(\Sigma\subset\Omega\) and Dirichlet boundary condition on \(\Omega\backslash\Sigma\) (\(\alpha,\gamma\) are suitable functions, \(n\) is the outward normal), the authors prove that the \(C_0\)-semigroup \(e^{-tA}\) generated by the operator realization \(A\) of \(L\) defined by the form method is positivity preserving and contractive on \(L_p\). A more detailed analysis of the one-dimensional case is included. The proof is based on the context of the Dirichlet form. Mass conservation is also under discussion. The appendix to the paper contains a new result concerning the closability of the maximal form associated with \(-\nabla a\nabla\), where \(a\in W^1_{2,\text{loc}}(\Omega)\).

Related Organizations
Keywords

Dirichlet forms, Dirichlet boundary condition, One-parameter semigroups and linear evolution equations, 47N20, formal elliptic expression, 34B05, 31C25, operator realization, \(C_0\)-semigroup, Mass conservation, Boundary value problems for second-order elliptic equations, 35J25, Linear boundary value problems for ordinary differential equations, positivity preserving, contractive, Wentzell boundary condition, closability, 47B25

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Top 10%
Average
Green
Related to Research communities