Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Statistica Sinica
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Statistica Sinica
Article . 2019 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2014
License: CC BY
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tensor Generalized Estimating Equations for Longitudinal Imaging Analysis

Authors: Dinggang Shen; Lexin Li; Yeqing Zhou; Hua Zhou; Adni; Xiang Zhang;

Tensor Generalized Estimating Equations for Longitudinal Imaging Analysis

Abstract

In an increasing number of neuroimaging studies, brain images, which are in the form of multidimensional arrays (tensors), have been collected on multiple subjects at multiple time points. Of scientific interest is to analyze such massive and complex longitudinal images to diagnose neurodegenerative disorders and to identify disease relevant brain regions. In this article, we treat those problems in a unifying regression framework with image predictors, and propose tensor generalized estimating equations (GEE) for longitudinal imaging analysis. The GEE approach takes into account intra-subject correlation of responses, whereas a low rank tensor decomposition of the coefficient array enables effective estimation and prediction with limited sample size. We propose an efficient estimation algorithm, study the asymptotics in both fixed $p$ and diverging $p$ regimes, and also investigate tensor GEE with regularization that is particularly useful for region selection. The efficacy of the proposed tensor GEE is demonstrated on both simulated data and a real data set from the Alzheimer's Disease Neuroimaging Initiative (ADNI).

40 pages, 4 figures, 2 tables

Keywords

FOS: Computer and information sciences, Aging, longitudinal imaging, Artificial Intelligence and Image Processing, Statistics & Probability, Statistics, multidimensional array, Neurosciences, 610, tensor regression, Mathematical Sciences, 510, Brain Disorders, Methodology (stat.ME), Neurological, ADNI, Biomedical Imaging, Generalized estimating equations, magnetic resonance imaging, Other Mathematical Sciences, Statistics - Methodology, low rank tensor decomposition

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Green
bronze
Related to Research communities