
In our study, a closed-type penetration unit for standard penetration test (SPT) equipment was developed in order to operate in an underwater environment. This type causes energy dissipation, mainly due to the small gap between an airtight case and moving hammer. The dissipation was estimated through a CFD analysis. The computed dissipated energy was less than 1.2% compared to the potential energy of the hammer with the given gap. Subsequently, the impact energy of the underwater SPT equipment was within 1.2% of that for the SPT equipment on land.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
