Downloads provided by UsageCounts
The regular subgroup determining an induced Hopf Galois structure for a Galois extension $L/K$ is obtained as the direct product of the corresponding regular groups of the inducing subextensions. We describe here the associated Hopf algebra and Hopf action of an induced structure and we prove that they are obtained by tensoring the corresponding inducing objects. In order to deal with their associated orders we develop a general method to compute bases and free generators in terms of matrices coming from representation theory of Hopf modules. In the case of an induced Hopf Galois structure it allows us to decompose the associated order, assuming that inducing subextensions are arithmetically disjoint.
11R33, 16T05, Hopf galois structure, Field theory (Physics), :11 Number theory::11R Algebraic number theory: global fields [Classificació AMS], :Matemàtiques i estadística::Àlgebra::Teoria de cossos i polinomis [Àrees temàtiques de la UPC], Classificació AMS::12 Field theory and polynomials::12F Field extensions, Àrees temàtiques de la UPC::Matemàtiques i estadística::Àlgebra::Teoria de cossos i polinomis, :12 Field theory and polynomials::12F Field extensions [Classificació AMS], Teoria algebraica de, Hopf galois module theory, Nombres, Algebraic number theory, Nombres, Teoria algebraica de, FOS: Mathematics, Number Theory (math.NT), associated order, :Matemàtiques i estadística::Àlgebra::Teoria de nombres [Àrees temàtiques de la UPC], Teoria de camps (física), Classificació AMS::11 Number theory::11R Algebraic number theory: global fields, Hopf algebras and their applications, Mathematics - Number Theory, Hopf Galois module theory, Hopf Galois structure, Associated order, Integral representations related to algebraic numbers; Galois module structure of rings of integers, Àrees temàtiques de la UPC::Matemàtiques i estadística::Àlgebra::Teoria de nombres
11R33, 16T05, Hopf galois structure, Field theory (Physics), :11 Number theory::11R Algebraic number theory: global fields [Classificació AMS], :Matemàtiques i estadística::Àlgebra::Teoria de cossos i polinomis [Àrees temàtiques de la UPC], Classificació AMS::12 Field theory and polynomials::12F Field extensions, Àrees temàtiques de la UPC::Matemàtiques i estadística::Àlgebra::Teoria de cossos i polinomis, :12 Field theory and polynomials::12F Field extensions [Classificació AMS], Teoria algebraica de, Hopf galois module theory, Nombres, Algebraic number theory, Nombres, Teoria algebraica de, FOS: Mathematics, Number Theory (math.NT), associated order, :Matemàtiques i estadística::Àlgebra::Teoria de nombres [Àrees temàtiques de la UPC], Teoria de camps (física), Classificació AMS::11 Number theory::11R Algebraic number theory: global fields, Hopf algebras and their applications, Mathematics - Number Theory, Hopf Galois module theory, Hopf Galois structure, Associated order, Integral representations related to algebraic numbers; Galois module structure of rings of integers, Àrees temàtiques de la UPC::Matemàtiques i estadística::Àlgebra::Teoria de nombres
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 64 | |
| downloads | 28 |

Views provided by UsageCounts
Downloads provided by UsageCounts