Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Tamkang Journal of M...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Tamkang Journal of Mathematics
Article . 2021 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Tamkang Journal of Mathematics
Article
License: CC BY NC SA
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2022
Data sources: zbMATH Open
versions View all 2 versions
addClaim

Quenching for Porous Medium Equations

Quenching for porous medium equations
Authors: Selcuk, Burhan;

Quenching for Porous Medium Equations

Abstract

This paper studies the following two porous medium equations with singular boundary conditions. First, we obtain that finite time quenching on the boundary, as well as kt blows up at the same finite time and lower bound estimates of the quenching time of the equation kt = (kn)xx + (1 − k)−α, (x,t) ∈ (0,L) × (0,T) with (kn)x (0,t) = 0, (kn)x (L,t) = (1 − k(L,t))−β, t ∈ (0,T) and initial function k(x,0) = k0 (x), x ∈ [0, L] where n > 1, α and β and positive constants. Second, we obtain that finite time queching on the boundary, as well as kt blows up at the same finite time and a local existence resultbythehelpofsteadystateoftheequationkt =(kn)xx,(x,t)∈(0,L)×(0,T)with (kn)x (0,t) = (1 − k(0,t))−α, (kn)x (L,t) = (1 − k(L,t))−β, t ∈ (0,T) and initial function k (x, 0) = k0 (x), x ∈ [0, L] where n > 1, α and β and positive constants.

Related Organizations
Keywords

Blow-up in context of PDEs, Quasilinear parabolic equations, Initial-boundary value problems for second-order parabolic equations, singular boundary condition, finite time quenching on the boundary, Maximum principles in context of PDEs

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold