
Let $X$ be a completely regular Hausdorff space, $E$ a Hausdorff locally convex topological vector space, and $V$ a system of weights on $X$. Denote by $CV_b(X, E)$ ($CV_o(X, E)$) the weighted space of all continuous functions $f : X \to E$ such that $vf (X)$ is bounded in $E$ (respectively, $vf$ vanishes at infinity on $X$) for all $v \in V$. In this paper, we give an improved characterization of weighted composition operators on $CV_b(X, E)$ and present a linear dynamical system induced by composition operators on the metrizable weighted space $CV_o(\mathbb{R}, E)$.
Spaces of vector- and operator-valued functions, Dynamical systems and ergodic theory, Linear composition operators, Linear operators on function spaces (general), Topological linear spaces of continuous, differentiable or analytic functions, dynamical system
Spaces of vector- and operator-valued functions, Dynamical systems and ergodic theory, Linear composition operators, Linear operators on function spaces (general), Topological linear spaces of continuous, differentiable or analytic functions, dynamical system
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
