Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ edocarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
edoc
Thesis . 2021
Data sources: edoc
https://dx.doi.org/10.5451/uni...
Other literature type . 2021
Data sources: Datacite
versions View all 2 versions
addClaim

Mathematical modelling of transmission dynamics of Opisthorchis viverrini

Authors: Bürli, Christine;

Mathematical modelling of transmission dynamics of Opisthorchis viverrini

Abstract

The trematode liver fluke, Opisthorchis viverrini, is endemic in Thailand, Lao People's Democratic Republic (Lao PDR) and Cambodia. Its life cycle involves humans, dogs and cats as definitive hosts; and snails and fish as intermediate hosts. Humans get infected through the consumption of raw or undercooked fish. A severe infection of O. viverrini can lead to cholangiocarcinoma, a mostly fatal bile duct cancer. Control activities include treatment of humans and domestic pets, health education on food consumption and improved sanitation. Mathematical modelling can help us to understand this multi-host disease system, identify weak points in the transmission cycle and determine the effectiveness of combinations of interventions to provide rational advice for the planning of control activities. Analysis and simulation of a series of mathematical models, ranging from deterministic ordinary differential equations models to stochastic individual-based models, calibrated to data from two islands in the Mekong river in Lao PDR, suggest that (i) mass drug administration is necessary for elimination of O. viverrini to be achieved as quickly as possible; (ii) sustainable education campaigns are as important as mass drug administration; and (iii) it is unlikely that cats and dogs are necessary for transmission to persist.

Country
Switzerland
Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities
Cancer Research