
doi: 10.5402/2012/956291
Our aim in this paper is to study the long-time behavior for a class of doubly nonlinear parabolic equations. First we show that the problem has a unique solution. Then we prove that the semigroup corresponding to the problem is norm-to-weak continuous in Lq and H01. Finally we establish the existence of global attractor of the problem in Lq and H01.
Quasilinear parabolic equations, Asymptotic behavior of solutions to PDEs, Attractors, doubly nonlinear parabolic equation, long-time behavior
Quasilinear parabolic equations, Asymptotic behavior of solutions to PDEs, Attractors, doubly nonlinear parabolic equation, long-time behavior
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
