
doi: 10.5402/2011/428959
A Cayley graph of a finite group is called normal edge transitive if its automorphism group has a subgroup which both normalizes and acts transitively on edges. In this paper we determine all cubic, connected, and undirected edge-transitive Cayley graphs of dihedral groups, which are not normal edge transitive. This is a partial answer to the question of Praeger (1999).
Finite automorphism groups of algebraic, geometric, or combinatorial structures, automorphism group, dihedral groups, Graphs and abstract algebra (groups, rings, fields, etc.)
Finite automorphism groups of algebraic, geometric, or combinatorial structures, automorphism group, dihedral groups, Graphs and abstract algebra (groups, rings, fields, etc.)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
