Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Revista de Engenhari...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Revista de Engenharia Térmica
Article . 2015 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

COMPUTER ANALYSIS OF THE GMAW AND GMAW-CW WELDING THERMAL CYCLES

Authors: J. T. B. Lopes; A. S. A. Ferreira; Eduardo de Magalhães Braga; Tárcio dos Santos Cabral; Everton Augusto Maciel Mendonça; R. R. Maciel;

COMPUTER ANALYSIS OF THE GMAW AND GMAW-CW WELDING THERMAL CYCLES

Abstract

A novel process of welding GMAW-CW (Gas Metal Arc Welding-Cold Wire) had been developed with it resemblance to the GMAW (Gas Metal Arc Welding), the GMAW-CW has an additional wire fed into de weld pool, allowing better deposition rates, while maintaining weld characteristics. However, there is a more complex situation related to the HAZ (Heat Affected Zone) and weld geometry prediction than the GMAW conventional. The welding energy is a high metallurgical important parameter because together with the geometric characteristics of the gasket and the preheat level is decisive in thermal cycles imposed to the material, and therefore in the possible microstructural transformations and behavior of the joint. The behavior of representative curves of thermal cycling reflects important aspects regarding the conditions used in welding. Usually such factors as the type of process, use or non- pre or post- heating, heat input, multipass welding, are able to establish differences in the form of a heat cycle curve. In this work, it was applied the dual ellipsoidal model of heat input, adapted to the GMAW-CW and compared to the same model over the GMAW, using existing experimental data and predicting the HAZ dimensions in function of weld and welding parameters. The results found had less than 10% error from experimental data in a more refined version of the model, whereas the difficulties to predict cold wire addition influences were not trivial.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
bronze
Related to Research communities