Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Decision Science Let...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Decision Science Letters
Article . 2021 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Decision Science Letters
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Decision Science Letters
Article . 2021
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Simulation of generalized Gamma distribution with maximum likelihood estimation and expectation-maximization algorithm on right censored data type 1

Authors: Kurniasari, Dian; Warsono, Warsono; Indryani, Nourma; Usman, Mustofa; Hadi, Sutopo;

Simulation of generalized Gamma distribution with maximum likelihood estimation and expectation-maximization algorithm on right censored data type 1

Abstract

The Generalized Gamma distribution is very suitable for modeling data with various forms of hazard (risk) functions, which makes the Generalized Gamma distribution useful in survival analysis. Survival analysis aims are to predict chances of survival, disease recurrence, death, and other events over a period of time. One characteristic of survival data is the possibility of sensors. Let X be the life span of the person being studied and the right censorship time of Cr, X is assumed to be independent with the probability density function f(x), the survival function S(x), and the hazard function h(x). A person's X life span will be known if X is less than or equal to Cr. If X is greater than Cr, the individual X survives or is censored right now. Statistical inference, especially parameter estimation is needed in analyzing empirical data. Obviously the estimation results obtained are expected to be a good estimator, namely to meet the nature of unbiased and minimum variance. This paper will discuss the results of the estimation of Generalized Gamma distribution parameters with type 1 right censored data through simulations using the Expectation Maximization method and the Maximum Likelihood Estimation method. The simulation is conducted by generating data with the sample size: 25, 50, 100, 200, 500, 1000, 1500 and 2000 as well as determining censored data of 10%, 20% and 30% by first setting the parameters used which are obtained from the data of patients with gastric cancer namely α = 1.0649, β = 1,072, θ = 59.766. Based on the results obtained from the simulations on the two estimation methods that the parameter estimation using the Maximum Likelihood Estimation method is better than the Expectation Maximization method because it provides a smaller bias and MSE value where the larger the sample size used, the estimated parameter value will get closer to the parameter in fact. In addition, the Expectation Maximization method can also be used as an alternative estimation of generalized gamma distribution parameters with type 1 right censored data because it has a bias value and MSE approaching the MLE method.

Related Organizations
Keywords

Business mathematics. Commercial arithmetic. Including tables, etc., QA299.6-433, Analysis, HF5691-5716

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities
Cancer Research