
A small spheroid settling in a quiescent fluid experiences an inertial torque that aligns it so that it settles with its broad side first. Here we show that an active particle experiences such a torque too, as it settles in a fluid at rest. For a spherical squirmer, the torque is T = -9/8  mf (vs(0)  x vg(0)), where vs(0)  is the swimming velocity, vg(0) the settling velocity in the Stokes approximation, and mf the equivalent fluid mass. This torque aligns the swimming direction against gravity: swimming up is stable, swimming down is unstable. This talk is based on Candelier, F., Qiu, J., Zhao, L., Voth, G., & Mehlig, B. (2022). Inertial torque on a squirmer. Journal of Fluid Mechanics, 953, R1.
Fluid Dynamics (physics.flu-dyn), FOS: Physical sciences, Physics - Fluid Dynamics
Fluid Dynamics (physics.flu-dyn), FOS: Physical sciences, Physics - Fluid Dynamics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
