Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Theoretic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-Ecole des Ponts ParisTech
Article . 2025
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL Sorbonne Université
Article . 2025
License: CC BY
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Expressing general constitutive models in FEniCSx using external operators and algorithmic automatic differentiation

Authors: Latyshev, Andrey; Bleyer, Jérémy; Maurini, Corrado; Hale, Jack;

Expressing general constitutive models in FEniCSx using external operators and algorithmic automatic differentiation

Abstract

Many problems in solid mechanics involve general and non-trivial constitutive models that are difficult to express in variational form. Consequently, it can be challenging to define these problems in automated finite element solvers, such as the FEniCS Project, that use domain-specific languages specifically designed for writing variational forms. In this article, we describe a methodology and software framework for FEniCSx / DOLFINx that enables the expression of constitutive models in nearly any general programming language. We demonstrate our approach on two solid mechanics problems; the first is a simple von Mises elastoplastic model with isotropic hardening implemented with Numba, and the second a Mohr-Coulomb elastoplastic model with apex smoothing implemented with JAX. In the latter case we show that by leveraging JAX's algorithmic automatic differentiation transformations we can avoid error-prone manual differentiation of the terms necessary to resolve the constitutive model. We show extensive numerical results, including Taylor remainder testing, that verify the correctness of our implementation. The software framework and fully documented examples are available as supplementary material under the LGPLv3 or later license.

Keywords

algorithmic automatic differentiation, external operators, [INFO.INFO-NA] Computer Science [cs]/Numerical Analysis [cs.NA], FEniCSx, constitutive models, [SPI.MECA.SOLID] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Solid mechanics [physics.class-ph], [INFO.INFO-CE] Computer Science [cs]/Computational Engineering, Finance, and Science [cs.CE], [SPI.MECA.MSMECA] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Materials and structures in mechanics [physics.class-ph], [INFO.INFO-MO] Computer Science [cs]/Modeling and Simulation, JAX, Numba, [SPI.MECA.GEME] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanical engineering [physics.class-ph], automated finite element solvers

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold