
handle: 1885/24796
1.1. The k-Yamabe problem. The k-Yamabe problem is a higher order extension of the celebrated Yamabe problem for scalar curvature. It was initially proposed by Viaclovsky [72] and also arose in the study of Q-curvatures in [11]. Viaclovsky found that in a conformal metric, the resultant k-curvature equation can be expressed as an equation similar to the k-Hessian equation, which has been studied by many authors [77]. The k-Yamabe problem can be formulated as follows. Let (Mn, g) be a closed Riemannian manifold of dimension n ≥ 3. It is well-known that there is an orthonormal decomposition of the Riemannian curvature tensor
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
