
handle: 2158/1046313
We initiate the study of an analogue of the Yamabe problem for complex manifolds. More precisely, fixed a conformal Hermitian structure on a compact complex manifold, we are concerned in the existence of metrics with constant Chern scalar curvature. In this note, we set the problem and we provide a positive answer when the expected constant Chern scalar curvature is non-positive. In particular, this includes the case when the Kodaira dimension of the manifold is non-negative. Finally, we give some remarks on the positive curvature case, showing existence in some special cases and the failure, in general, of uniqueness of the solution.
Chern-Yamabe problem, constant Chern scalar curvature, Chern connection, Gauduchon metric
Chern-Yamabe problem, constant Chern scalar curvature, Chern connection, Gauduchon metric
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
