
Eulerian numbers, introduced by Euler in 1736 [5], while not as ubiquitous as the more familiar Bernoulli numbers, Stirling numbers, harmonic numbers, or binomial coefficients, nevertheless arise in a variety of contexts in enumerative combinatorics, for example, in the enumeration of permutations with a given number of descents [7]. Because the recurrence for Eulerian numbers is a bit more complicated than for many other families of special numbers, and because they increase in size rather rapidly, it was stated in [7] that, “We don’t expect the Eulerian numbers to satisfy as many simple identities.” Nevertheless, the following identity is rather elegant and appears to be new.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
