Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Differential Geometry
Article . 2023
Data sources: VIRTA
Journal of Differential Geometry
Article . 2023 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2018
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Blowups and blowdowns of geodesics in Carnot groups

Authors: Hakavuori, Eero; Le Donne; Enrico;

Blowups and blowdowns of geodesics in Carnot groups

Abstract

This paper provides some partial regularity results for geodesics (i.e., isometric images of intervals) in arbitrary sub-Riemannian and sub-Finsler manifolds. Our strategy is to study infinitesimal and asymptotic properties of geodesics in Carnot groups equipped with arbitrary sub-Finsler metrics. We show that tangents of Carnot geodesics are geodesics in some groups of lower nilpotency step. Namely, every blowup curve of every geodesic in every Carnot group is still a geodesic in the group modulo its last layer. Then as a consequence we get that in every sub-Riemannian manifold any $s$ times iterated tangent of any geodesic is a line, where $s$ is the step of the sub-Riemannian manifold in question. With a similar approach, we also show that blowdown curves of geodesics in sub-Riemannian Carnot groups are contained in subgroups of lower rank. This latter result is also extended to rough geodesics.

43 pages, 2 figures, included versions of the main theorems for weak tangents, revised section 5.2, to appear in the Journal of Differential Geometry

Keywords

Mathematics - Differential Geometry, matematiikka, Mathematics - Metric Geometry, Differential Geometry (math.DG), Optimization and Control (math.OC), ta111, FOS: Mathematics, geodesia, Metric Geometry (math.MG), 53C17, 49K21, 28A75, Mathematics - Optimization and Control

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
Funded by
Related to Research communities