Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 1994
Data sources: IRIS Cnr
https://doi.org/10.4271/941933...
Article . 1994 . Peer-reviewed
Data sources: Crossref
CNR ExploRA
Article . 1994
Data sources: CNR ExploRA
versions View all 3 versions
addClaim

High Efficiency Stoichiometric Spark Ignition Engines

Authors: De Petris C; Diana S; Giglio V; Police G;

High Efficiency Stoichiometric Spark Ignition Engines

Abstract

<div class="htmlview paragraph">Nowadays most passenger cars are equipped with spark ignition engines with a three way catalyst. Thus, the improvement of fuel consumption of this type of engine represents a very attractive goal. In fact, it may cause a reduction of pollutant emission, and simultaneously, it may give a contribution to the lowering of global CO2 production.</div> <div class="htmlview paragraph">In this paper, a strategy to control the combustion process of stoichiometric spark ignition engines is described. It is based on the adoption of Exhaust Gas Recycle (EGR) in high compression ratio engines. The tests carried out have shown that EGR can control the knock, even at Wide Open Throttle (WOT), with a compression ratio of about 13.5.</div> <div class="htmlview paragraph">Improvements of efficiency higher than 10%, at different loads and speeds, have been achieved by the adoption of this technique. Similar improvements have been obtained for CO, while more substantial reductions have been measured for NOx.</div>

Country
Italy
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!