Views provided by UsageCounts
doi: 10.4271/2011-24-0016
handle: 11380/1248892 , 11380/693648
<div class="section abstract"><div class="htmlview paragraph">In recent years, interest has been growing in the 2-Stroke Diesel cycle, coupled to high speed engines. One of the most promising applications is on light aircraft piston engines, typically designed to provide a top brake power of 100-200 HP with a relatively low weight. The main advantage yielded by the 2-Stroke cycle is the possibility to achieve high power density at low crankshaft speed, allowing the propeller to be directly coupled to the engine, without a reduction drive. Furthermore, Diesel combustion is a good match for supercharging and it is expected to provide a superior fuel efficiency, in comparison to S.I. engines. However, the coupling of 2-Stroke cycle and Diesel combustion on small bore, high speed engines is quite complex, requiring a suitable support from CFD simulation. In this paper, a customized version of the KIVA-3v code (a CFD program for multidimensional analyses) has been used to address ports and combustion chamber design of a new project (a 3-cylinder 1.8L engine, with a power rating up to 150 HP). Multidimensional calculations have been supported by 1D engine cycle analyses, using GT-Power.</div><div class="htmlview paragraph">Two types of combustion-scavenging system have been considered, both of them featuring direct injection: a configuration with exhaust poppet valves and another one with piston controlled ports. A development of both projects has been performed through a coupled 1d-3d computational approach.</div><div class="htmlview paragraph">A first set of KIVA calculations has been performed, in order to characterize the scavenging and the port flow patterns of both configurations, considering three different operating conditions, representative an aircraft engine.</div><div class="htmlview paragraph">Then, several combustion simulations have been run, for defining two chambers able to match the project goals (high fuel efficiency, limited in-cylinder peak-pressure). For the two best configurations, the most interesting calculation results are presented in the paper.</div></div>
2-Stroke Engines; Compression Ignition; Scavenging; Combustion; CFD-3D
2-Stroke Engines; Compression Ignition; Scavenging; Combustion; CFD-3D
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 34 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 105 |

Views provided by UsageCounts