Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Speciated Hydrocarbon Emissions from an Automotive Diesel Engine and DOC Utilizing Conventional and PCI Combustion

Authors: Stanislav V. Bohac; Manbae Han; Timothy J. Jacobs; Alberto J. López; Dennis N. Assanis; Patrick G. Szymkowicz;

Speciated Hydrocarbon Emissions from an Automotive Diesel Engine and DOC Utilizing Conventional and PCI Combustion

Abstract

<div class="htmlview paragraph">Premixed compression ignition low-temperature diesel combustion (PCI) can simultaneously reduce particulate matter (PM) and oxides of nitrogen (NO<sub>x</sub>). Carbon monoxide (CO) and total hydrocarbon (THC) emissions increase relative to conventional diesel combustion, however, which may necessitate the use of a diesel oxidation catalyst (DOC). For a better understanding of conventional and PCI combustion, and the operation of a platinum-based production DOC, engine-out and DOC-out exhaust hydrocarbons are speciated using gas chromatography.</div> <div class="htmlview paragraph">As combustion mode is changed from lean conventional to lean PCI to rich PCI, engine-out CO and THC emissions increase significantly. The relative contributions of individual species also change; increasing methane/THC, acetylene/THC and CO/THC ratios indicate a richer combustion zone and a reduction in engine-out hydrocarbon incremental reactivity.</div> <div class="htmlview paragraph">The DOC is most effective in oxidizing CO, followed by acetylene and olefins, aromatics, non-methane paraffins and methane. DOC conversion efficiency of CO and THC is high for lean conventional and lean PCI but very low for rich PCI. The high CO/O<sub>2</sub> ratio of rich PCI is believed to cause nearly all of the catalyst's active sites to be filled with CO, essentially disabling it until the CO/O<sub>2</sub> ratio is reduced. Lean PCI DOC-out exhaust has the lowest combination of NO<sub>x</sub>, PM, CO and THC emissions, and the lowest atmospheric ozone forming potential.</div>

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!