
In this paper, multidimensional weakly singular integrals are solved by using rectangular quadrature rules which base on quadrature rules of one dimensional weakly singular and multidimensional regular integrals with their Euler-Maclaurin asymptotic expansions of the errors. The presented method is suit for solving multidimensional and singular integrals by comparing with Gauss quadrature rule. The error asymptotic expansions show that the convergence order of the initial quadrature rules is , where . The order of accuracy can reach to by using extrapolation and splitting extrapolation, where h0 is the maximum mesh width. Some numerical examples are constructed to show the efficiency of the method.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
