
handle: 11590/267345
In this paper, a constructive theory is developed for approximating func- tions of one or more variables by superposition of sigmoidal functions. This is done in the uniform norm as well as in the L p norm. Results for the simultaneous approx- imation, with the same order of accuracy, of a function and its derivatives (whenever these exist), are obtained. The relation with neural networks and radial basis func- tions approximations is discussed. Numerical examples are given for the purpose of illustration.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 38 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
