
We construct spectral triples for the Sierpinski gasket as infinite sums of unbounded Fredholm modules associated with the holes in the gasket and investigate their properties. For each element in the K-homology group we find a representative induced by one of our spectral triples. Not all of these triples, however, will have the right geometric properties. If we want the metric induced by the spectral triple to give the geodesic distance, then we will have to include a certain minimal family of unbounded Fredholm modules. If we want the eigenvalues of the associated generalized Dirac operator to have the right summability properties, then we get limitations on the number of summands that can be included. If we want the Dixmier trace of the spectral triple to coincide with a multiple of the Hausdorff measure, then we must impose conditions on the distribution of the summands over the gasket. For the elements of a large subclass of the K-homology group, however, the representatives are induced by triples having the desired geometric properties. We finally show that the same techniques can be applied to the Sierpinski pyramid.
28A80, 46L87, 53C22, 58B34, Mathematics - K-Theory and Homology, Mathematics - Operator Algebras, FOS: Mathematics, K-Theory and Homology (math.KT), Operator Algebras (math.OA)
28A80, 46L87, 53C22, 58B34, Mathematics - K-Theory and Homology, Mathematics - Operator Algebras, FOS: Mathematics, K-Theory and Homology (math.KT), Operator Algebras (math.OA)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
