Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Combinato...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Combinatorial Algebra
Article . 2023 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2023
Data sources: zbMATH Open
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
BiPrints
Article . 2023
License: "In Copyright" Rights Statement
Data sources: BiPrints
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Publications at Bielefeld University
Article . 2023
License: "In Copyright" Rights Statement
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
https://dx.doi.org/10.15488/19...
Article . 2023
License: CC BY
Data sources: Datacite
versions View all 8 versions
addClaim

Reflection factorizations and quasi-Coxeter elements

Authors: Wegener, Patrick; Yahiatene, Sophiane;

Reflection factorizations and quasi-Coxeter elements

Abstract

We investigate the so-called dual Matsumoto property or Hurwitz action in finite, affine and arbitrary Coxeter groups. In particular, we want to investigate how to reduce reflection factorizations and how two reflection factorizations of the same element are related to each other. We are motivated by the dual approach to Coxeter groups proposed by Bessis (2003) and the question whether there is an analogue of the well-known Matsumoto property for reflection factorizations. Our aim is a substantial understanding of the Hurwitz action. We therefore reprove uniformly results of Lewis–Reiner as well as Baumeister–Gobet–Roberts and the first author on the Hurwitz action in finite and affine Coxeter groups. Further we show that in an arbitrary Coxeter group all reduced reflection factorizations of the same element appear in the same Hurwitz orbit after a suitable extension by simple reflections. As parabolic quasi-Coxeter elements play an outstanding role in the study of the Hurwitz action, we aim to characterize these elements. We provide a characterization of maximal parabolic quasi-Coxeter elements in arbitrary Coxeter groups as well as a characterization of all parabolic quasi-Coxeter elements in affine Coxeter groups.

Country
Germany
Related Organizations
Keywords

Hurwitz action, absolute order, Coxeter groups, Group Theory (math.GR), Braid groups; Artin groups, reflection factorizations, 510, Group actions on combinatorial structures, Reflection and Coxeter groups (group-theoretic aspects), FOS: Mathematics, Mathematics - Combinatorics, quasi-Coxeter elements, Combinatorics (math.CO), Mathematics - Group Theory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold