
Transposable elements have an ongoing, largely parasitic interaction with their hosts. We are interested in the timescale of this interaction. In a recent publication, we have examined the sequence divergence between class II DNA transposons from mammalian genomes. We asked whether these sequences undergo a continuing process of turnover, keeping a family as an integrated whole, as members of the family are continually created and lost. Alternatively, we envisaged that elements might have been involved in a burst of amplification, soon after they first occupied a mammalian genome, and the shared ancestry of present-day elements harks back to this initial amplification, a process that we termed a "life cycle." We resolved between these processes by estimating the time to common ancestry predicted from the genetic diversity of sequences found in a transposon family, and also estimating, from the mammalian orders that currently possess copies of the family, the time when the family first entered the mammalian genome. These times are approximately the same, supporting the "life cycle" model. This casts light on how far we can infer genetic changes in the past through the study of DNA sequences from the present.
class II, evolution, transposons, Commentary, mammals, molecular dating
class II, evolution, transposons, Commentary, mammals, molecular dating
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
