<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
AbstractWe generalize the Chern class relation for the transversal intersection of two nonsingular varieties to a relation for possibly singular varieties, under a splayedness assumption. We show that the relation for the Chern–Schwartz–MacPherson classes holds for two splayed hypersurfaces in a nonsingular variety, and under a strong splayedness assumption for more general subschemes. Moreover, the relation is shown to hold for the Chern–Fulton classes of any two splayed subschemes. The main tool is a formula for Segre classes of splayed subschemes. We also discuss the Chern class relation under the assumption that one of the varieties is a general very ample divisor.
Mathematics - Algebraic Geometry, FOS: Mathematics, Algebraic Geometry (math.AG), 14C17, 14J17
Mathematics - Algebraic Geometry, FOS: Mathematics, Algebraic Geometry (math.AG), 14C17, 14J17
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |