Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Canadian Journal of Mathematics
Article . 1982 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 1982
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Toeplitz Operators on Bergman Spaces

Toeplitz operators on Bergman spaces
Authors: Axler, Sheldon; Conway, John B.; McDonald, Gerard;

Toeplitz Operators on Bergman Spaces

Abstract

Let G be a bounded, open, connected, non-empty subset of the complex plane C. We put the usual two dimensional (Lebesgue) area measure on G and consider the Hilbert space L2(G) that consists of the complex-valued, measurable functions defined on G that are square integrable. The inner product on L2(G) is given by the norm ‖h‖2 of a function h in L2(G) is given by ‖h‖2 = (∫G|h|2)1/2.The Bergman space of G, denoted La2(G), is the set of functions in L2(G) that are analytic on G. The Bergman space La2(G) is actually a closed subspace of L2(G) (see [12 , Section 1.4]) and thus it is a Hilbert space.Let G denote the closure of G and let C(G) denote the set of continuous, complex-valued functions defined on G.

Related Organizations
Keywords

Toeplitz operators, Hankel operators, Wiener-Hopf operators, Spaces of bounded analytic functions of one complex variable, Bergman space, (Semi-) Fredholm operators; index theories, Hilbert spaces of continuous, differentiable or analytic functions, Fredholm operator, Toeplitz operators

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 10%
Top 1%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!