
Throughout this note, an operator will always mean a bounded linear operator acting on a Hilbert space X into itself, unless otherwise stated. The class Cρ (0 < ρ < ∞ ) of operators, considered by Sz.-Nagy and Foiaş [5], is defined as follows: An operator T is in Cρ if Tnx = pPUnx for all x ∊ X, n = 1, 2, . . . , where U is a unitary operator on some Hilbert space Y containing X as a subspace, and P is the orthogonal projection of Y onto X. In [2] Holbrook defined the operator radii wρ(·) (0 < ρ ≦ ∞ ) as the generalized Minkowski distance functionals on the Banach algebra of bounded linear operators on X, i.e.,and w∞(T) = r(T), the spectral radius of T [2, Theorem 5.1].
Linear symmetric and selfadjoint operators (unbounded), Spectrum, resolvent
Linear symmetric and selfadjoint operators (unbounded), Spectrum, resolvent
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
