
The list of known finite simple groups other than the cyclic, alternating, and Mathieu groups consists of the classical groups which are (projective) unimodular, orthogonal, symplectic, and unitary groups, the exceptional groups which are the direct analogues of the exceptional Lie groups, and certain twisted types which are constructed with the aid of Lie theory (see §§3 and 4 below). In this article, it is proved that each of these groups is generated by two of its elements. It is possible that one of the generators can be chosen of order 2, as is the case for the projective unimodular group (1), or even that one of the generators can be chosen as an arbitrary element other than the identity, as is the case for the alternating groups. Either of these results, if true, would quite likely require methods much more detailed than those used here.
group theory
group theory
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 78 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
