
For most purposes, one can replace the use of Rolle's theorem and the mean value theorem, which are not constructively valid, by the law of bounded change. The proof of two basic results in numerical analysis, the error term for Lagrange interpolation and Simpson's rule, however seem to require the full strength of the classical Rolle's Theorem. The goal of this note is to justify these two results constructively, using ideas going back to Amp��re and Genocchi.
FOS: Mathematics, 03F60, 65D30, Mathematics - Numerical Analysis, Mathematics - Logic, Numerical Analysis (math.NA), Digital Security, Logic (math.LO)
FOS: Mathematics, 03F60, 65D30, Mathematics - Numerical Analysis, Mathematics - Logic, Numerical Analysis (math.NA), Digital Security, Logic (math.LO)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
