
arXiv: math/0411243
In the present paper, we describe new approaches for constructing virtual knot invariants. The main background of this paper comes from formulating and bringing together the ideas of biquandle (Kauffman and Radford) the virtual quandle (Manturov), the ideas of quaternion biquandles by Roger Fenn and Andrew Bartholomew, the concepts and properties of long virtual knots (Manturov), and other ideas in the interface between classical and virtual knot theory. In the present paper we present a new algebraic construction of virtual knot invariants, give various presentations of it, and study several examples. Several conjectures and unsolved problems are presented throughout the paper.
Mathematics - Geometric Topology, Mathematics - Quantum Algebra, 57M25, FOS: Mathematics, Quantum Algebra (math.QA), Geometric Topology (math.GT)
Mathematics - Geometric Topology, Mathematics - Quantum Algebra, 57M25, FOS: Mathematics, Quantum Algebra (math.QA), Geometric Topology (math.GT)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 33 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
