
Let $\mathbb{N}$ denote the set of all nonnegative integers and $A$ be a subset of $\mathbb{N}$. Let $h\geq2$ and let $r_h(A,n)=\sharp \{ (a_1,\ldots,a_h)\in A^{h}: a_1+\cdots+a_h=n\}.$ The set $A$ is called an asymptotic basis of order $h$ if $r_h(A,n)\geq 1$ for all sufficiently large integers $n$. An asymptotic basis $A$ of order $h$ is minimal if no proper subset of $A$ is an asymptotic basis of order $h$. Recently, Chen and Tang resoved a problem of Nathanson on minimal asymptotic bases of order $h$. In this paper, we generalized this result to $g$-adic representations.
Mathematics - Number Theory, FOS: Mathematics, Number Theory (math.NT)
Mathematics - Number Theory, FOS: Mathematics, Number Theory (math.NT)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
