
Basically, the schema of a data warehouse lies on two kinds of elements: facts and dimensions. Facts are used to memorize measures about situations or events. Dimensions are used to analyse these measures, particularly through aggregation operations (counting, summation, average, etc.). To fix the ideas let us consider the analysis of the sales in a shop according to the product type and to the month in the year. Each sale of a product is a fact. One can characterize it by a quantity. One can calculate an aggregation function on the quantities of several facts. For example, one can make the sum of quantities sold for the product type “mineral water” during January in 2001, 2002 and 2003. Product type is a criterion of the dimension Product. Month and Year are criteria of the dimension Time. A quantity is so connected both with a type of product and with a month of one year. This type of connection concerns the organization of facts with regard to dimensions. On the other hand a month is connected to one year. This type of connection concerns the organization of criteria within a dimension. The possibilities of fact analysis depend on these two forms of connection and on the schema of the warehouse. This schema is chosen by the designer in accordance with the users needs. Determining the schema of a data warehouse cannot be achieved without adequate modelling of dimensions and facts. In this article we present a general model for dimensions and facts and their relationships. This model will facilitate greatly the choice of the schema and its manipulation by the users.
[INFO.INFO-DB] Computer Science [cs]/Databases [cs.DB]
[INFO.INFO-DB] Computer Science [cs]/Databases [cs.DB]
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
