Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ American Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
American Journal of Clinical Nutrition
Article . 2014 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Role of amino acid transporters in amino acid sensing

Authors: Taylor, Peter M;

Role of amino acid transporters in amino acid sensing

Abstract

Amino acid (AA) transporters may act as sensors, as well as carriers, of tissue nutrient supplies. This review considers recent advances in our understanding of the AA-sensing functions of AA transporters in both epithelial and nonepithelial cells. These transporters mediate AA exchanges between extracellular and intracellular fluid compartments, delivering substrates to intracellular AA sensors. AA transporters on endosomal (eg, lysosomal) membranes may themselves function as intracellular AA sensors. AA transporters at the cell surface, particularly those for large neutral AAs such as leucine, interact functionally with intracellular nutrient-signaling pathways that regulate metabolism: for example, the mammalian target of rapamycin complex 1 (mTORC1) pathway, which promotes cell growth, and the general control non-derepressible (GCN) pathway, which is activated by AA starvation. Under some circumstances, upregulation of AA transporter expression [notably a leucine transporter, solute carrier 7A5 (SLC7A5)] is required to initiate AA-dependent activation of the mTORC1 pathway. Certain AA transporters may have dual receptor-transporter functions, operating as "transceptors" to sense extracellular (or intracellular) AA availability upstream of intracellular signaling pathways. New opportunities for nutritional therapy may include targeting of AA transporters (or mechanisms that upregulate their expression) to promote protein-anabolic signals for retention or recovery of lean tissue mass.

Country
United Kingdom
Related Organizations
Keywords

Mammals, Amino Acid Transport Systems, TOR Serine-Threonine Kinases, Cell Membrane, 610, Epithelial Cells, Mechanistic Target of Rapamycin Complex 1, Up-Regulation, Leucine, Multiprotein Complexes, Animals, Humans, Lymphocytes, Amino Acids, Lysosomes, Muscle, Skeletal, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    197
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
197
Top 1%
Top 10%
Top 1%
bronze