Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mathematical Bioscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematical Biosciences and Engineering
Article . 2024 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/ye...
Other literature type . 2024
Data sources: Datacite
https://dx.doi.org/10.60692/g9...
Other literature type . 2024
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evolutionary optimization framework to train multilayer perceptrons for engineering applications

إطار التحسين التطوري لتدريب المفاهيم متعددة الطبقات للتطبيقات الهندسية
Authors: Rami Al-Hajj; Mohamad M. Fouad; Mustafa Zeki;

Evolutionary optimization framework to train multilayer perceptrons for engineering applications

Abstract

<abstract> <p>Training neural networks by using conventional supervised backpropagation algorithms is a challenging task. This is due to significant limitations, such as the risk for local minimum stagnation in the loss landscape of neural networks. That may prevent the network from finding the global minimum of its loss function and therefore slow its convergence speed. Another challenge is the vanishing and exploding gradients that may happen when the gradients of the loss function of the model become either infinitesimally small or unmanageably large during the training. That also hinders the convergence of the neural models. On the other hand, the traditional gradient-based algorithms necessitate the pre-selection of learning parameters such as the learning rates, activation function, batch size, stopping criteria, and others. Recent research has shown the potential of evolutionary optimization algorithms to address most of those challenges in optimizing the overall performance of neural networks. In this research, we introduce and validate an evolutionary optimization framework to train multilayer perceptrons, which are simple feedforward neural networks. The suggested framework uses the recently proposed evolutionary cooperative optimization algorithm, namely, the dynamic group-based cooperative optimizer. The ability of this optimizer to solve a wide range of real optimization problems motivated our research group to benchmark its performance in training multilayer perceptron models. We validated the proposed optimization framework on a set of five datasets for engineering applications, and we compared its performance against the conventional backpropagation algorithm and other commonly used evolutionary optimization algorithms. The simulations showed the competitive performance of the proposed framework for most examined datasets in terms of overall performance and convergence. For three benchmarking datasets, the proposed framework provided increases of 2.7%, 4.83%, and 5.13% over the performance of the second best-performing optimizers, respectively.</p> </abstract>

Keywords

Backpropagation Learning, Artificial neural network, cooperative optimization algorithm, Artificial intelligence, Economics, Backpropagation, evolutionary training, optimizing multilayer perceptrons, Activation function, Feedforward Neural Networks, Artificial Intelligence, Evolutionary algorithm, Machine learning, QA1-939, FOS: Mathematics, Swarm Intelligence Optimization Algorithms, Optimization problem, Theory and Applications of Extreme Learning Machines, Constraint Handling, Economic growth, Ensemble Learning, Perceptron, Geography, Mathematical optimization, optimizing neural networks, Neural Network Fundamentals and Applications, neural networks, Computer science, Regression, Algorithm, machine learning, evolutionary computation, multilayer perceptrons, Computer Science, Physical Sciences, Convergence (economics), Global optimization, Benchmark (surveying), heuristic optimization, TP248.13-248.65, Mathematics, Geodesy, Biotechnology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
gold