
doi: 10.3934/mbe.2022308
pmid: 35730271
<abstract><p>In this paper, using the fractional integral with respect to the $ \Psi $ function and the $ \Psi $-Hilfer fractional derivative, we consider the Volterra fractional equations. Considering the Gauss Hypergeometric function as a control function, we introduce the concept of the Hyers-Ulam-Rassias-Kummer stability of this fractional equations and study existence, uniqueness, and an approximation for two classes of fractional Volterra integro-differential and fractional Volterra integral. We apply the Cădariu-Radu method derived from the Diaz-Margolis alternative fixed point theorem. After proving each of the main theorems, we provide an applied example of each of the results obtained.</p></abstract>
QA1-939, TP248.13-248.65, Mathematics, hyers-ulam-rassias-kummer stability, fractional volterra integro-differential equation, alternative fixed-point theorem, Biotechnology
QA1-939, TP248.13-248.65, Mathematics, hyers-ulam-rassias-kummer stability, fractional volterra integro-differential equation, alternative fixed-point theorem, Biotechnology
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
