
doi: 10.3934/math.2022186
<abstract><p>We obtain a new maximum principle of the periodic solutions when the corresponding impulsive equation is linear. If the nonlinear is quasi-monotonicity, we study the existence of the minimal and maximal periodic mild solutions for impulsive partial differential equations by using the perturbation method, the monotone iterative technique and the method of upper and lower solution. We give an example in last part to illustrate the main theorem.</p></abstract>
the monotone iterative technique, evolution equation, existence, QA1-939, periodic mild solution, non-instantaneous impulses, Mathematics
the monotone iterative technique, evolution equation, existence, QA1-939, periodic mild solution, non-instantaneous impulses, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
