Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AIMS Mathematicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIMS Mathematics
Article . 2021 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIMS Mathematics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIMS Mathematics
Article . 2021
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2021
Data sources: zbMATH Open
https://dx.doi.org/10.60692/fp...
Other literature type . 2021
Data sources: Datacite
https://dx.doi.org/10.60692/z3...
Other literature type . 2021
Data sources: Datacite
versions View all 5 versions
addClaim

Nonlinear boundary value problems for fractional differential inclusions with Caputo-Hadamard derivatives on the half line

مشاكل القيمة الحدية غير الخطية للشوائب التفاضلية الجزئية مع مشتقات كابوتو- هادامارد على خط المنتصف
Authors: Mouffak Benchohra; John R. Graef; Nassim Guerraiche; Samira Hamani;

Nonlinear boundary value problems for fractional differential inclusions with Caputo-Hadamard derivatives on the half line

Abstract

Les auteurs établissent des conditions suffisantes pour l'existence de solutions à un problème de valeur limite pour des inclusions différentielles fractionnaires impliquant la dérivée de type Caputo-Hadamard d'ordre $ r \in (1, 2] $ sur des intervalles infinis. Les deux cas de côtés droits convexes et non convexes sont pris en compte. La technique de la preuve implique des théorèmes à virgule fixe combinés à une méthode de diagonalisation.

Los autores establecen condiciones suficientes para la existencia de soluciones a un problema de valor límite para inclusiones diferenciales fraccionarias que involucran la derivada de tipo Caputo-Hadamard de orden $ r \in (1, 2] $ en intervalos infinitos. Se consideran ambos casos de lados derecho valorados convexos y no convexos. La técnica de la demostración implica teoremas de punto fijo combinados con un método de diagonalización.

The authors establish sufficient conditions for the existence of solutions to a boundary value problem for fractional differential inclusions involving the Caputo-Hadamard type derivative of order $ r \in (1, 2] $ on infinite intervals. Both cases of convex and nonconvex valued right hand sides are considered. The technique of proof involves fixed point theorems combined with a diagonalization method.

يضع المؤلفون شروطًا كافية لوجود حلول لمشكلة القيمة الحدية للشوائب التفاضلية الجزئية التي تنطوي على مشتق نوع Caputo - Hadamard من الترتيب $ r \in (1، 2] $ على فترات لا حصر لها. يتم النظر في كل من حالات الجانبين الأيمن المحدب وغير المحدب. تتضمن تقنية الإثبات نظريات النقطة الثابتة جنبًا إلى جنب مع طريقة القطر.

Keywords

Nonlinear boundary value problems for ordinary differential equations, Fractional Differential Equations, Economics, Geometry, Fractional ordinary differential equations, Theory and Applications of Fractional Differential Equations, Mathematical analysis, Quantum mechanics, Half line, Value (mathematics), Convex function, Caputo-Hadamard type derivative, QA1-939, FOS: Mathematics, Fixed-point theorem, Boundary value problem, Biology, Anomalous Diffusion Modeling and Analysis, Hadamard transform, Order (exchange), Ordinary differential inclusions, Boundary value problems on infinite intervals for ordinary differential equations, Differential inclusion, Ecology, Applied Mathematics, Physics, Statistics, existence, Fractional calculus, Pure mathematics, Partial Differential Equations, caputo-hadamard type derivative, Applied mathematics, diagonalization method, Nonlocal Partial Differential Equations and Boundary Value Problems, Regular polygon, fractional differential inclusions, Fractional Derivatives, Boundary Value Problems, Modeling and Simulation, FOS: Biological sciences, Physical Sciences, Nonlinear system, Fractional Calculus, Type (biology), Mathematics, Finance

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
gold