
handle: 11591/325594
The multinomial model is used to study the dependence relationship between a categorical response variable with more than two categories and a set of explicative variables. In presence of multicollinearity, the estimation of the multinomial model parameters becomes inaccurate. To solve this problem we develop an extension of Principal Component Logistic Regression (PCLR), model proposed by Aguilera et al. (2006). Finally a case study illustrates the advantages of the method.
multinomial logit regression; multicollinearity; principal component regression
multinomial logit regression; multicollinearity; principal component regression
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
